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Order statistics of Rosenstock’s trapping problem in disordered media

S. B. Yuste* and L. Acedo†

Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain
~Received 24 January 2003; published 26 September 2003!

The distribution of timest j ,N elapsed until the firstj independent random walkers from a set ofN@1, all
starting from the same site, are trapped by a quenched configuration of traps randomly placed on a disordered
lattice is investigated. In doing so, the cumulants of the distribution of the territory explored byN independent
random walkersSN(t), and the probabilityFN(t) that no particle of an initial set ofN is trapped by timet are
considered. Simulation results for the two-dimensional incipient percolation aggregate show that the ratio
between thenth cumulant and thenth moment ofSN(t) is, for largeN, ~i! very large in comparison with the
same ratio in Euclidean media, and~ii ! almost constant. The first property implies that, in contrast with
Euclidean media, approximations of the order higher than the standard zeroth-order Rosenstock approximation
are required to provide a reasonable description of the trapping order statistics. Fortunately, the second property
~which has a geometric origin! can be exploited to build these higher-order Rosenstock approximations.
Simulation results for the two-dimensional incipient percolation aggregate confirm the predictions of our
approach.

DOI: 10.1103/PhysRevE.68.036134 PACS number~s!: 02.50.2r, 05.40.2a, 66.30.2h
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I. INTRODUCTION

Rosenstock’s trapping problem is a fundamental prob
of random walk theory which has been of interest for d
cades@1–4#. Most studies refer to the case in which a sing
(N51) random walker is placed initially at a site of a E
clidean or disordered lattice which is randomly filled wi
trap sites at a concentrationc, and then performs a random
walk until it is absorbed by one of these traps. The statist
quantity of main interest in this problem is the survival pro
ability F1(t) that the random walker is not trapped by timet,
from which one can obtain the moments^tm&5*0

`tm@1
2F1(t)#dt of the lifetime of this random walker. This prob
lem has its origin in Smoluchowski’s theory of coagulati
of colloidal particles@3–5# and has been applied to man
systems in physics and chemistry such as trapping of mo
defects in crystals with point sinks@6–8#, the kinetics of
luminescent organic materials@7#, anchoring of polymers by
chemically active sites@9#, and atomic diffusion in glasslike
materials@10#, among others.

A generalization of the trapping problem to the case oN
independent random walkers was studied by Krapivsky
Redner in Ref.@11#. In particular, they studied the problem
of N diffusing predators placed initially at a given distan
from a diffusing prey in one dimension. The model in whi
static preys are stochastically distributed all to one side
the predators was the subject of a later analysis@12#. Shortly
after, the order statistics of the trapping problem
d-dimensional Euclidean lattices for a set ofN@1 indepen-
dent random walkers, i.e., the statistical description of
time t j ,N elapsed until the firstj out of N independent random
walkers ~initially starting at the same site! are trapped by
quenched traps randomly arranged ond-dimensional Euclid-
ean lattices, was studied~and rigorously solved for the one
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dimensional case! in Ref. @13#. In this work, the moments
^t j ,N

m &, m51,2,3, . . . , were calculated from the probabilit
F j ,N(t) that j random walkers of the initial set ofN have
been absorbed by timet. The key step in this calculation wa
the assumption of independency of the random walkers
allowed the establishment of a relationship betweenF j ,N(t)
and the survival probabilityFN(t)[F0,N(t) of the full set of
N random walkers@13#. The survival probabilityFN(t) was
calculated by means of Rosenstock’s approximation wh
required the evaluation of the first moment of the numb
SN(t) of different sites visited~territory explored! by N ran-
dom walkers.

Interest in multiparticle diffusion problems has had
boost lately because of some advances in optical spec
copy @14# which make it possible to monitor events corr
sponding to single particles of an ensemble. The simu
neous tracking ofN@1 fluorescently labeled particles an
the analysis of the motions of the particles allows the stu
of local conditions~mechanical response, viscoelasticity! in-
side many complex structures such as fibrous polymers
the intracellular medium@15#. But biological samples and
many real inorganic substances are disordered media~as op-
posed to translationally invariant Euclidean media! which are
usually described as stochastic fractals@4,16,17#. There are
two main reasons for this identification: disordered syste
share the statistical fractal structure of stochastic fractal m
els and diffusion is anomalous in both media.

The single-particle (N51) Rosenstock trapping problem
in fractal media have been thoroughly discussed by Blum
Klafter, and Zumofen@2,18#. In this paper, we will study its
multiparticle (N@1) version, which is relevant for all thos
cases where the diffusing particles are placed~or created! in
bunches. This may be especially important if the first or fi
few particles that are absorbed lead to a trigger effect. H
we generalize to disordered fractal substrates the results
the order statistics of the multiparticle trapping problem o
tained for Euclidean media in Ref.@13#. We will discover
that for the two-dimensional incipient percolation aggrega
©2003 The American Physical Society34-1
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and in sharp contrast with the Euclidean media results,
zeroth-order Rosenstock approximation is quite incapabl
describing the survival probabilities, and therefore the or
statistics of the multiparticle trapping problem we are de
ing with. This is because the ratio between the cumulantskm

of the distribution ofSN(t) and ^SN(t)&m is relatively large
~and almost constant! for N@1. We traced the origin of this
behavior to the fact that the fluctuations in the numberSN(t)
of distinct sites explored by a large numberN of random
walkers are negligible relative to the fluctuations in the nu
ber of sites that form the stochastic substrate. As a prac
consequence, higher-order Rosenstock approximations
required for these media in order to give an account of
order statistics trapping problem with an accuracy similar
those reached by means of the zeroth-order Rosenstock
proximation for Euclidean lattices. The idea of evaluating
survival probability for the multiparticle trapping problem
for Euclidean media by means of the Rosenstock approxi
tion was first suggested by Larraldeet al. in Ref. @19#, al-
though, to the best of our knowledge, it has not been imp
mented ~except for the so-called ‘‘one-sided trappin
problem’’ @12#! perhaps for the lack of precise expressio
for the momentŝ SN

m(t)& of SN(t). However, for the perco-
lation aggregate, we will discover in Sec. III that one can
a very good estimate of̂SN

m(t)& from the value of the first
moment^SN(t)&. This is fortunate because the asympto
expansion of̂ SN(t)& for largeN is known for this medium
@20#.

The multiparticle Rosenstock trapping problem we a
considering here can be seen as a stochastic generalizati
the problem of the order statistics for the sequence of tr
ping times~or exit times! of a set ofN independent random
walkers, all starting from the same site at the same ti
when the traps form a ‘‘spherical’’ absorbing boundary w
a fixed radius. This problem was first studied by Lindenb
et al. @21# and Weisset al. @22# for Euclidean lattices~mainly
for the one-dimensional case!. After these pioneering works
improved results and extensions to deterministic and rand
fractal substrates have been reported@23,24#. A closely re-
lated multiparticle Brownian problem has been recently c
sidered by Be´nichou et al. @25#: they studied the joint resi
dence times ofN independent Brownian particles in a disk
a given radius. In particular, they studied the time spent
all N particles simultaneously in the disk within a given tim
interval, and the time which at leastN2 j out of N particles
spend together in the disk within a time interval.

The plan of the paper is as follows. In Sec. II, the expr
sions that describe the order statistics of the trapping pro
are deduced. In Sec. III, we study the moments^SN

m(t)& of
the territory explored byN independent random walkers o
two-dimensional incipient percolation aggregates by me
of numerical simulation. The results of Sec. III are applied
Sec. IV to obtain the survival probabilityFN(t) by means of
Rosenstock’s approximation. Then we calculate the mom
^t j ,N

m & of the time elapsed until the firstj random walkers
are trapped for everyj 51,2, . . . andm51,2, . . . andcom-
pare these predictions with simulation results for the tw
03613
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dimensional incipient percolation aggregate. A general d
cussion and conclusions are given in Sec. V.

II. DEFINITIONS AND FUNDAMENTAL RELATIONS

The results and definitions of this section have alrea
been discussed in detail in the context of the trapping pr
lem in Euclidean media@13#. However, we will briefly sum-
marize those results that are basic and necessary in ord
follow the arguments in the rest of the paper.

Let us first defineC j ,N(t) as the probability thatj random
walkers of the initial set ofN have been absorbed by timet
by a given configuration of traps arranged on a given re
ization of the disordered substrate. The quantity of statist
interest is the averageF j ,N(t)5^C j ,N(t)& performed over
all the possible outcomes of the ‘‘trapping experiment’’ ca
ried out in a quenched configuration of traps in a given l
tice realization followed by an average over all trap config
rations and lattice realizations. We will also denote byC(t)
the probability that a single random walker has not be
absorbed by timet in this quenched configuration of trap
placed upon a specific lattice realization. This is commo
known as the survival probability. It is then clear that

C j ,N~ t !5S N

j D ~12C! jCN2 j

5S N

j D (
m50

j

~21!mS j

mDCN2 j 1m

5~21! j S N

j D“ jC0,N , ~1!

where “

jC0,N(t)5(m50
j (21)m(m

j )C0,N2m(t) is just the
backward difference formula for thej th derivative of
C0,N(t), djC0,N(t)/dNj . Averaging over different configura
tions, and taking into account thatF0,N(t)[FN(t)
5^C0,N(t)& andF j ,N(t)5^C j ,N(t)&, we get

F j ,N~ t !5~21! j S N

j D“ jFN~ t !. ~2!

Let us call Sj the state in whichj particles have been
absorbed andN2 j particles of the initial set ofN are still
diffusing, and lethj ,N(t) dt be the probability that thej th
absorbed particle of the initial set ofN disappears during the
time interval (t,t1dt#. The change of the probability ofSj
during the time interval (t,t1dt# is given by F j ,N(t1dt)
2F j ,N(t). But this probability changes during this time in
terval by two causes: first, because the stateSj 21 can be-
come the stateSj if a particle of the set ofN2 j 11 particles
still diffusing is trapped during the time interval (t,t1dt#
@which happens with probabilityhj ,N(t)dt], and second, be-
causeSj can become the stateSj 11 if a particle of the set of
N2 j particles still diffusing is trapped during this time in
terval @which happens with probabilityhj 11,N(t)dt]. There-
fore F j ,N(t1dt)2F j ,N(t)5@hj ,N(t)2hj 11,N(t)#dt, i.e.,

hj 11,N~ t !5hj ,N2
d

dt
F j ,N~ t ! ~3!
4-2
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with h0,N50. Then, themth moment of the time in which
the j th particle is trapped is given by

^t j ,N
m &5E

0

`

tmhj ,N~ t !dt. ~4!

Using Eqs.~2!–~4!, we find theexactrecursion relation

^t j 11,N
m &5^t j ,N

m &1~21! j S N

j D“ j^t1,N
m &, ~5!

where

^t1,N
m &5mE

0

`

tm21FN~ t !dt. ~6!

The set of Eqs.~5! and ~6! is remarkable because it implie
that the order statistics of the trapping problem can be
scribed from the knowledge of̂t1,N

m & only. The difference
derivative“ j in Eqs.~2! and~5! can be approximated by th
ordinary derivativedj /dNj when j !N. This will be justified
~and used! in Sec. IV.

III. MOMENTS OF THE TERRITORY EXPLORED BY
Nš1 RANDOM WALKERS ON A TWO-DIMENSIONAL

INCIPIENT PERCOLATION AGGREGATE

The diffusion in percolation clusters as a model of tra
port in disordered media was first suggested by de Gen
@26#. Percolation clusters are disordered fractals: they sh
the self-similarity property with deterministic fractals bu
up through deterministic rules but only in a statistical sen
In order to characterize these fractals, several static and
namic exponents have been defined. Perhaps, the
widely known is the fractal dimensiondf , which, in the case
of disordered systems, is more conveniently defined us
the scaling of mass with linear size,M;Ldf . However, ran-
dom walkers in disordered structures are forced to follow
paths formed by the bonds between sites and, conseque
it is more natural to define a chemical~or topological! dis-
tance between two sites as the length of the shortest
along lattice bonds,,. If we consider the number of site
inside a hypersphere of radius,, V(,), usually known as
chemical volume~also coincides with the mass if we assum
that every site has a unit mass!, it is expected that̂V(,)&
;V0,d,, where the brackets refers to an average over
possible realization of the lattices andd, is the chemical
dimension. Similarly, the generalized Einstein’s law of diff
sion for anomalous systems can be written in terms of
ordinary Euclidean distancer or the chemical one,, and we
have

^r 2&;2Dt2/dw,

^,2&;2D,t2/dw
,
, ~7!

for t@1, whereD and D, are the diffusion coefficient and
the chemical diffusion coefficient, respectively. The exp
nentdw is the random walk dimension, also known as diff
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sion exponent. The exponentdw
, corresponding to the chemi

cal ~or topological! metric is called chemical random wal
dimension. Another important exponent appearing in
theory of random walks in disordered media is the spectra
fracton dimensionds52df /dw52d, /dw

, @4#.
Rosenstock’s procedure@7# for evaluating the survival

probability of a set of random walkers requires the know
edge of the first moments of the territory exploredSN(t) by
these random walkers. This is an interesting~and difficult!
problem in itself which has already been thoroughly stud
in the case of N@1 independent random walker
@11,19,20,24,27–29# although only the first moment^SN(t)&
has been rigorously estimated@20,28,29#. The average value
of the territory explored byN@1 random walkers, all start
ing from the same site, in a disordered medium was analy
in Refs.@20,24# and it was found that@20#

^SN~ t !&;S̄Ntds/2, ~8!

with

S̄N5V0~2D,!d,/2S ln N

ĉ
D d, /v

3F12d,

dw
, 21

dw
, (

n51

`

~ ln N!2n (
m50

n

sm
(n)~ ln ln N!mG .

~9!

The parametersĉ andsm
(n) are characteristic of the lattice an

some of their values for several Euclidean and fractal me
are known@20,28,29#. In particular, for the two-dimensiona
incipient percolation aggregate, Monte Carlo simulations
this substrate~with particles jumping from a site to one of it
nearest neighbors placed at one unit distance in each
time! have shown@20,29# that d,.1.65, v5dw

, /(dw
, 21)

with dw
, .2.45, ds52d, /dw

, .1.35, V0.1.1, ĉ.1.05, 2D,

.1.2, s0
(1)52g2 ln Âĉm̂.20.62 (g.0.577 216 is the Euler

constant!, ands1
(1)5m̂.0.8 ~see Table I!. Hence we have a

reasonable estimate of the asymptotic series for^SN(t)& in
Eq. ~9! up to first order (n51), which is sufficient to ac-
count for simulation results, as Fig. 1 shows.

In our simulations, we also evaluated the second cumu
~variance!, k2(SN)5^SN

2 &2^SN&2, and the third cumulant
k3(SN)5^SN

3 &23^SN
2 &^SN&12^SN&3, of the territory ex-

ploredSN(t) as they are necessary for implementing the
tended Rosenstock approximation~see Sec. IV!. We found
that the ratiokm[km(SN)/^SN(t)&m, although not very sen-
sitive to the value ofN ~one can see in Figs. 2 and 3 th

TABLE I. Parameters appearing in the asymptotic expression
^SN(t)& and the ratios,2 and,3 for the two-dimensional incipient
percolation aggregate.

d, dw
,

Â ĉ m̂ V0 D, ,2 ,3

1.65 2.45 1.0 1.05 0.8 1.1 0.6 0.14 0.015
4-3
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these parameters are well represented byk250.1360.02 and
k350.01560.02 over a wide range ofN values!, seems to
tend to a constant value for largeN ~about 0.14 fork2 and
0.016 fork3). This is a surprising behavior that departs co
siderably from that of Euclidean media. For example, for
d-dimensional Euclidean lattices it was found thatk2 goes as
1/ln2 N for largeN. Also, the value ofk2 for largeN is much
smaller than for the percolation aggregate~for example, for
N5210, k2.1/152,1/302, and 1/502 in the one-, two-, and
three-dimensional Euclidean lattices, respectively@13#!,
which has important consequences for the accuracy
Rosenstock’s approximations of different orders, as we w
show in Sec. IV. The disordered nature of the substrate m
be the reason for these remarkable differences in the be
ior of km . What is happening is that, for largeN, the fluc-

FIG. 1. ^SN(t)&/tds/2 versus lnN in the two-dimensional incipi-
ent percolation aggregate. The lines represent the result of
zeroth-order approximation~dashed line! and the first-order ap-
proximation ~solid line!. The symbols are simulation results o
tained with 40 000 experiments fort51000 ~circles! and with
10 000 experiments fort52000 ~squares!.

FIG. 2. Simulation values ofk25k2(SN)/^SN(t)&2 versus lnN
for the two-dimensional incipient percolation aggregate obtai
averaging over 40 000~squares! and 20 000~circles! experiments
for t51000.
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tuations in the numberSN(t) of distinct sites explored by a
large numberN of random walkers are dominated by th
fluctuations ~over the set of stochastic lattice realizatio
used in the simulations! in the number of sites inside a hy

persphere of chemical radius,5A2D, t1/dw
,
. We summarize

this claim in a conjecture as follows:

lim
N→`

km5 lim
N→`

km„SN~ t !…

^SN~ t !&m
5

km~V!

^V~, !&m
[,m , ~10!

whereV(,) is the chemical volume~number of sites! of a
hypersphere of chemical radius, andkm(V) is themth cu-
mulant of the distribution ofV. Rigorously, the distance,

appearing in Eq.~10! is given byA2D,t1/dw
,
, which is the

radius of the diffusion front in the thermodynamic limit (N
→`). However, the quotient,m is not very sensitive to, if
a sufficiently large value of, is taken. In Fig. 4, we plot a
histogram for the chemical volume of a two-dimensional

he

d

FIG. 3. The same as Fig. 2 but fork35k3(SN)/^SN(t)&3.

FIG. 4. Histogram for the chemical volume inside a circle
chemical radius,5100 in the two-dimensional incipient percola
tion aggregate. A set of 2000 randomly generated clusters
4003400 square box were used in the computation. The distri
tion is clearly asymmetric around the maximum.
4-4



e

fl
r

th

a
la
n

le
io

th

-

la

rl

lt
e-

o

e

-
-
-

t

-

an

oxi-
pro-

ime
e:

-

a-

t is
ed in

lat-

t
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cipient percolation aggregate with,5100, evaluated using
2000 realizations of the lattice. Thereby we find that,2
.0.14 and,3.0.015 are in very good agreement with th
values ofk2 andk3, respectively, for largeN ~see Figs. 2 and
3!. Consequently, we conclude that the fluctuations inSN(t)
are dominated by the disorder of the substrate and the in
ence of the value ofN is completely overshadowed. Simila
arguments were presented by Rammal and Toulouse in
pioneering work on percolation clusters@30#.

IV. ORDER STATISTICS OF THE TRAPPING PROCESS

Assume that one has a quenched configuration of tr
randomly placed on a given realization of the disordered
tice with probabilityc. If N random walkers start from a
origin site free from traps att50, it is clear that the prob-
ability that all random walkers survive by timet is given by
(12c)SN(t). The average of this quantity over all possib
random walks, trap configurations, and substrate realizat
is known as the survival probability:FN(t)5^(12c)SN(t)&.
Using a well-known theorem in statistics, we can define
nth-order Rosenstock approximationFN

(n)(t) for estimating
FN(t) as

FN
(n)~ t !5expF (

j 51

n11
~2l! j

j !
k j~SN!G , ~11!

wherel[2 ln(12c) and k j (SN) is the j th-cumulant of the
distribution of the territory explored. In the limitn→`, we
recover the exact result forFN(t). In the case of the single
particle (N51) trapping problem, Eq.~11! is known as the
extended Rosenstock approximation or truncated cumu
expansion@3–5,18,31,32#. Its generalization to theN-particle
case was used in a one-dimensional trapping problem
Ref. @12#.

In the preceding section, we showed that Monte Ca
simulations strongly suggest thatkn(SN).kn^SN(t)&n for
large N, where kn are constants.@Note that k1(SN)
5^SN(t)&, so thatk151.# Therefore, inserting this resu
into Eq. ~11!, the nth-order Rosenstock approximation b
comes

FN
(n)~ t !.expF (

j 51

n11
~2l! j

j !
kj^SN& j G ~12!

or equivalently, by using Eq.~8!,

FN
(n)~ t !.expF (

j 51

n11
~2l! j

j !
kj S̄N

j t jds/2G . ~13!

We can now evaluate an approximation for the moments
the first trapping time,̂ t1,N

m &, by means of Eq.~6! assuming
that the contribution ofFN(t) to ^t1,N

m & is negligible for those
times for which FN(t) and FN

(n)(t) differ substantially.
Therefore, the substitution of Eq.~13! into Eq. ~6! yields

^t1,N
m &.^t1,N

m &n[mE
0

`

tm21 expF (
j 51

n11
~2l! j

j !
kj S̄N

j t jds/2Gdt.

~14!
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Writing v5lS̄Ntds/2, the nth-order Rosenstock’s estimat
^t1,N

m &n for ^t1,N
m & becomes

^t1,N
m &n5

2m

ds
~lS̄N!22m/dstn~m!, ~15!

where

tn~m!5E
0

`

v2m/ds21 expF (
j 51

n11
~21! j

j !
kjv

j Gdv. ~16!

Therefore, we find that the differentnth-order Rosentock ap
proximationŝ t1,N

m &n differ from each other only by a numeri
cal factortn(m) ~an integral! that depends only on the sub
strate through its spectral dimensionds and the set of
parameterskj , j 51,2, . . . , which come from the distribu-
tion of the chemical volume of this substrate@cf. Eq. ~10!#.
The integral in Eq.~16! is trivial for n50 and yields
t0(m)5G(2m/ds). Using the values of Table I, we getds

52d, /dw
, .1.375 and the estimatest0(1).0.89, t0(2)

.1.95, andt0(3).10.9 for the two-dimensional incipien
percolation aggregate. The integral in Eq.~16! only con-
verges for even values ofn so the next meaningful approxi
mation corresponds ton52. Taking the valuesk250.13 and
k350.015~which describek2 andk3 well over the range of
values ofN used in our simulations: see Figs. 2 and 3! and
evaluating the integral in Eq.~16! numerically, we found the
second-order prefactorst2(m): t2(1)'1.24, t2(2)'6.04,
andt2(3)'95.6, which are systematically much larger th
the zeroth-order onest0(m), especially when the orderm of
the moment is large. This means that Rosenstock’s appr
mations of order higher than zero must be necessary to
vide reasonable predictions forFN(t) and ^t1,N

m & in disor-
dered media, especially when the momentm is large. It
should be noted that the expression for the first trapping t
in Eq. ~15! includes two approximations of different natur
~a! due to the fact that we are using a finite numbern of
terms in the cumulant expansion@which only affects the fac-
tor tn(m)] and ~b! due to the finite number of terms consid
ered for estimatingS̄N by means of the asymptotic series~9!.
Consequently, it is convenient to classify these approxim
tions by indexing them with a pair of integers (n,l ): the first
index gives the order of the Rosenstock approximation tha
used, and the second gives the number of terms consider
the evaluation of̂ SN(t)&. In this way, the approximation
(n,0) corresponds to the replacement in Eq.~15! of S̄N by the
leading term of the series of Eq.~9!, so that ^t1,N

m &n

5^t1,N
m &n0@11O(1/lnN)# with

^t1,N
m &n05

2mtn~m!

ds@lV0~2D,!d,/2#2m/ds
S ln N

ĉ
D m(12dw

, )

~17!

5
Tn~m!

l2m/ds~ ln N!m(dw
,

21)
, ~18!

and where we have absorbed all the dependence on the
tice characteristic parameters (V0 , D, , ds , . . . ) into the
coefficientTn(m). In the same way, if we take the two firs
4-5
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terms in the asymptotic series of Eq.~9!, we find ^t1,N
m &n

5^t1,N
m &n1@11O(1/lnN)2#, where the approximation (n,1) is

^t1,N
m &n15

Tn~m!

l2m/ds~ ln N!m(dw
,

21)

3F12d,

dw
, 21

dw
,

s0
(1)1s1

(1)ln N

ln N G22m/ds

~19!

or, for lnN@1,

^t1,N
m &n15

Tn~m!

l2m/ds~ ln N!m(dw
,

21)

3F11m~dw
, 21!

s0
(1)1s1

(1) ln N

ln N G . ~20!

In Fig. 5, we compare simulation results for the trappi
time of the first particle with the theoretical predictions giv
by Eqs. ~18! and ~19! when the parameters of Table I a
used. We see that the second-order Rosenstock approx
tion leads to much better results than the standard zer
order approximation.

The momentŝ t j ,N
m &, j 52,3, . . . , corresponding to the

trapping of the j th particle absorbed by the traps can
easily estimated by means of Eq.~5!. However, we can also
obtain an explicit expression for^t j ,N

m & if we approximate the
difference operator“ j in Eq. ~5! by the derivativedj /dNj .
The error in this approximation can be estimated from
equation

FIG. 5. (̂ t1,N&l2/ds)1/(12dw
, ) versus lnN for the two-dimensional

incipient percolation aggregate. The lines represent thenth-order
Rosenstock approximation that uses thel th-order approximation for
SN(t) with, from top to bottom,n50 and l 50 ~dotted line!, n
50 andl 51 ~dashed-dotted line!, n52 andl 50 ~dashed line!, and
n52 and l 51 ~solid line!. In this and the following figures, we
have usedk250.13 andk350.015. The symbols represent simul
tion results forc50.008 ~average over 2000 lattice realization
circles! andc50.001 (20 000 lattice realizations; squares!.
03613
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“

j f ~N!

~DN! j
5

dj f ~N!

dNj
1OS dj 11f ~N!

dNj 11
DND . ~21!

In our case,f (N) is ^t1,N
m & andDN51 so that

“

j^t1,N
m &5

dj^t1,N
m &

dNj
1OS dj 11^t1,N

m &

dNj 11 D . ~22!

As

dj

dNj
~ ln N!2m5~21! jm

~ j 21!!

Nj
~ ln N!2m21

1
ln ln N

Nj
O„~ ln N!2m22

…, ~23!

one finds, from Eq.~18! @or Eq. ~19!#, that

“

j^t1,N
m &5

dj^t1,N
m &

dNj
@11O~N21!#. ~24!

Taking into account that (j
N)/Nj.1/j ! for j !N, we obtain

from Eqs.~5!, ~18! @or ~19!#, and~23! the recursion relation

^t j 11,N
m &5^t j ,N

m &1
1

j
m~dw

, 21!Tn~m!

3l22m/ds~ ln N!2m(dw
,

21)21F11OS 1

ln ND G ,
~25!

which can be easily solved:

^t j ,N
m &5^t1,N

m &1m~dw
, 21!Tn~m!l22m/ds

3
c~ j !1g

~ ln N!m(dw
,

21)11 F11OS 1

ln ND G , ~26!

where

c~ j !5c~1!1(
r 51

j 21
1

r
~27!

is the psi~digamma! function @33#, c(1)52g, andg is the
Euler constant. Equation~26! yields

^t j ,N
m &n05

Tn~m!

l2m/ds~ ln N!m(dw
,

21)
~28!

by using Eq.~18!, and

^t j ,N
m &n15

Tn~m!

l2m/ds~ ln N!m(dw
,

21)
F11m~dw

, 21!

3
c~ j !1g1s0

(1)1s1
(1) ln N

ln N G , ~29!

when Eq.~20! is used. In Fig. 6, we compare the predictio
for ^t2,N& obtained from Eqs.~28! and ~29! with simulation
4-6
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results. The results are similar to that found in Fig. 5
^t1,N&. In Fig. 7 the differenceŝ t j 11,N&2^t j ,N& estimated
from Eq. ~25! are also plotted in a scaled form forj 51,2.
The theoretical prediction is that, for largeN, these points
should tend to lie along a straight line~which is true! with a
slope (dw

, 21)T2(1)/ j , i.e., a slope 0.76 forj 51 and 1.0 for
j 52. The last prediction is not good forj 52 ~the fitted
value is 0.90!, but this should not be surprising because
Eq. ~25! we have ignored correction terms of order 1/lnN,
which are very large even for huge values ofN. The only
way to remedy this deficiency would be by increasing
number of asymptotic terms retained in the evaluation
^SN(t)&, which in turn requires knowingsm

(n) for n>2 @cf.
Eq. ~9!#. Unfortunately, these values ofsm

(n) are very difficult
to estimate by means of numerical simulations@20# and are
unknown forn>2.

FIG. 6. The same as Fig. 5 but for (^t2,N&l2/ds)1/(12dw
, ).

FIG. 7. Simulation results of@(^t j 11,N&2^t j ,N&)l2/ds#21/dw
,

when j 51 ~hollow symbols! and j 52 ~filled symbols! for the two-
dimensional incipient percolation aggregate. Squares@circles# rep-
resent simulation results forc50.001 @c50.008# averaged over
20 000 @2000# lattice realizations. The lines are linear fits wi
slopes 0.72~bottom! and 0.90~top!.
03613
r

e
f

The variance oft j ,N is easily obtained from Eq.~15!:

s j ,N
2 5

@Tn~2!2Tn
2~1!#

l4/ds~ ln N!2(dw
,

21) F112~dw
, 21!

3
c~ j !1g1s0

(1)1s1
(1) ln N

ln N
1OS 1

ln2 N
D G ~30!

and, consequently,

s j ,N
2

^t1,N&2
5ds

tn~2!

tn~1!2
21. ~31!

This is an interesting result because it means that the r
between the variance of the first trapping time and the m
of that time is, for largeN, independent ofN. The numerical
value of the ratios j ,N /^t1,N& is @dsG(4/ds)/G

2(2/ds)#21
.1.53 for the zeroth-order Rosenstock approximation, a
2.0 for the second-order approximation. In Fig. 8, we p
this ratio for j 51,2,3 versus lnN, and the second-order the
oretical limit s j ,N /^t1,N&.2 seems to be consistent with th
simulation data.

Some considerations about the range of validity of
approximations developed in this paper are called for at
point. The approximation for̂SN(t)& in Eqs. ~8! and ~9! is
only valid in the so-called regime II or intermediate tim
regime@20,29#. As the integral in Eq.~6! was evaluated as
suming that the expression for^SN(t)& was valid for all
times, we conclude that the integral ofmtm21FN(t) over the
short-time interval@0,t3# (t3; ln N being the crossover time
between regime I and regime II! has to be negligible relative
to ^t1,N

m &, or equivalently (lnN)m!^t1,N
m &, for our approach

and our results being reasonable. Taking into account

FIG. 8. Simulation values ofs j ,N /^t j ,N& versus lnN for j 51
~circles!, j 52 ~squares!, and j 53 ~triangles! and two trap concen-
trations:c50.001~hollow symbols; 20 000 lattice realizations! and
c50.008 ~filled symbols; 2000 lattice realizations! for the two-
dimensional incipient percolation aggregate. The second-o
Rosenstock approximation predicts a ratio close to 2 for large
ues ofN.
4-7
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estimate for^t1,N
m & given in Eq.~18!, this condition can be

written asl!(ln N)2d,. The concentrations of traps we hav
used in our simulations,c50.001 andc50.008, verify this
condition for all the values ofN considered. Apart from this
upper bound onc, we must also point out that, as also f
Euclidean lattices, our results break down if most of the tr
ping takes place within the long-time Donsker-Varadhan
gime @34#. Further reference to this limitation of the theo
presented in this paper will be made below.

V. SUMMARY AND CONCLUSIONS

We have dealt with the following order statistics proble
when N independent random walkers all starting from t
same site diffuse on a disordered lattice populated wit
concentrationc of static trapping sites, what is the distribu
tion of the elapsed timest j ,N until the first j random walkers
are trapped? We were able to generalize the theory devel
for the special case of Euclidean lattices@13# to the case of
disordered substrates, and asymptotic expressions for
moments^t j ,N

m & with j !N were obtained. To this end, w
used the so-called Rosenstock approximation, which is s
able for not very large times and small concentrations
traps,c. In this approximation, the survival probability of th
full set of N random walkers,FN(t), is expressed in terms o
the cumulantsk(SN) of the distribution of the territory cov-
eredSN(t).

Monte Carlo simulation results fork(SN) in the two-
dimensional incipient percolation aggregate showed that
largeN the ratiokm5km(SN)/^SN(t)&m, with m52,3, hardly
depends onN and is very large in comparison with the co
responding Euclidean ratio. We attribute this behavior to
fluctuations inSN(t) being dominated by the fluctuations
the volume of the medium inside a hypersphere of chem

radius,;A2D,t1/dw
,
. This claim is supported by the resu

km' l m for N@1 found by simulations ofSN(t) andV(,) in
two-dimensional incipient percolation aggregates, wherel m
5km(V)/^V(,)&m characterizes the fluctuations in the vo
ume V(,). Therefore, the resultkm' l m for N@1 implies
that the fluctuations inSN(t) are mainly accounted for by th
fluctuations inV(,), and that the fluctuations inSN(t) in-
duced by the randomness of the diffusion process are i
evant. One expects this also to be true for other disorde
media. Hence, if̂ Sn(t)& is known, the cumulants of the
distribution of SN(t) can be calculated~for any sufficiently
large value ofN) from the cumulants of the distribution o
the chemical volume. Finally, taking into account th
^SN(t)& is reasonably well known@20#, we arrive at a closed
nts
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expression for the survival probabilityFN(t) @cf. Eq. ~12!#
using Rosenstock’s approximation. But fromFN(t) one gets
the probabilityF jN(t) that j random walkers of the initial se
of N have been absorbed by timet @cf. Eq. ~2!#, so that,
finally, we get the moments of the trapping times^t j ,N

m & from
the first moment̂ Sn(t)& of the territory explored!

Comparison with simulation data shows that, in contr
with the Euclidean case, Rosenstock’s approximations of
order higher than zero are necessary to account for the o
statistics results in the two-dimensional percolation agg
gate. This is a consequence of the large value~in comparison
with the Euclidean case! of km , due to the large fluctuation
in the territory explored by the random walkers, induced,
we showed, by the spatial disorder of the substrate. Howe
some features of the order statistics of trapping hold in
disordered case: for example, we found that the ra
s j ,N /^t j ,N& depends only on the lattice characteristic para
etersds and km , m51,2, . . . , for largeN. This was con-
firmed by simulations in two-dimensional percolation agg
gates.

There are some interesting problems that we still can
answer with the theory developed in this paper. For exam
an important quantity is the timetN,N elapsed until all the
particles of the initial set ofN are trapped. The evaluation o
the moments of this quantity would require specific tec
niques for j 'N as our results are limited to the opposi
limit j !N. Moreover, the trapping of the last particles sure
takes place in the Donsker-Varadhan time regime@34# where
Rosenstock’s approximation for the survival probability ca
not be used. The recent development of a Monte Ca
method to evaluate confidently the survival probability in t
Donsker-Varadhan time regime for Euclidean lattices
Barkemaet al. @35#, following a previous work of Gallos
et al. @36#, could serve as starting point for tackling th
problem. However, one should be aware that this task is
a straightforward generalization to disordered media of t
carried out for Euclidean lattices because one has to take
consideration that, as Shapir@37# pointed out, the Donsker
Varandhan long-time behavior is dominated by the subse
lattice realizations that are more ramified~with ds51). Con-
sequently, an efficient Monte Carlo technique to explore
relevant rare lattice realizations in percolation clusters ha
be devised before.
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