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Order statistics of Rosenstock’s trapping problem in disordered media
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The distribution of timeg; \ elapsed until the first independent random walkers from a sethof 1, all
starting from the same site, are trapped by a quenched configuration of traps randomly placed on a disordered
lattice is investigated. In doing so, the cumulants of the distribution of the territory exploridrzlependent
random walkersSy(t), and the probabilityb(t) that no particle of an initial set dfl is trapped by timé are
considered. Simulation results for the two-dimensional incipient percolation aggregate show that the ratio
between thenth cumulant and theath moment ofSy(t) is, for largeN, (i) very large in comparison with the
same ratio in Euclidean media, ariiil) almost constant. The first property implies that, in contrast with
Euclidean media, approximations of the order higher than the standard zeroth-order Rosenstock approximation
are required to provide a reasonable description of the trapping order statistics. Fortunately, the second property
(which has a geometric origincan be exploited to build these higher-order Rosenstock approximations.
Simulation results for the two-dimensional incipient percolation aggregate confirm the predictions of our
approach.
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[. INTRODUCTION dimensional cagein Ref.[13]. In this work, the moments
(tf'y), m=1,23 ..., were calculated from the probability
Rosenstock’s trapping problem is a fundamental problemb; \(t) thatj random walkers of the initial set df have
of random walk theory which has been of interest for de-been absorbed by tinteThe key step in this calculation was
cadeq1-4]. Most studies refer to the case in which a singlethe assumption of independency of the random walkers that
(N=1) random walker is placed initially at a site of a Eu- allowed the establishment of a relationship betwdgn(t)
clidean or disordered lattice which is randomly filled with and the survival probabilityp (t) =P (t) of the full set of
trap sites at a concentratiany and then performs a random N random walker$13]. The survival probability® (t) was
walk until it is absorbed by one of these traps. The statisticatalculated by means of Rosenstock’s approximation which
quantity of main interest in this problem is the survival prob-required the evaluation of the first moment of the number
ability @, (t) that the random walker is not trapped by time S (t) of different sites visitedterritory explored by N ran-
from which one can obtain the momen{s™)=[{t™[1  dom walkers.
—®(t)]dt of the lifetime of this random walker. This prob- Interest in multiparticle diffusion problems has had a
lem has its origin in Smoluchowski’'s theory of coagulation boost lately because of some advances in optical spectros-
of colloidal particles[3-5] and has been applied to many copy [14] which make it possible to monitor events corre-
systems in physics and chemistry such as trapping of mobileponding to single particles of an ensemble. The simulta-
defects in crystals with point sink6—8], the kinetics of neous tracking oN>1 fluorescently labeled particles and
luminescent organic materidlg], anchoring of polymers by the analysis of the motions of the particles allows the study
chemically active sitef9], and atomic diffusion in glasslike of local conditions(mechanical response, viscoelastitity-
materials[10], among others. side many complex structures such as fibrous polymers and
A generalization of the trapping problem to the casd&lof the intracellular mediunj15]. But biological samples and
independent random walkers was studied by Krapivsky andnany real inorganic substances are disordered mediap-
Redner in Ref[11]. In particular, they studied the problem posed to translationally invariant Euclidean medidich are
of N diffusing predators placed initially at a given distanceusually described as stochastic fractigdsl6,17. There are
from a diffusing prey in one dimension. The model in which two main reasons for this identification: disordered systems
static preys are stochastically distributed all to one side ofhare the statistical fractal structure of stochastic fractal mod-
the predators was the subject of a later analyk®. Shortly  els and diffusion is anomalous in both media.
after, the order statistics of the trapping problem in The single-particle l=1) Rosenstock trapping problem
d-dimensional Euclidean lattices for a set$1 indepen- in fractal media have been thoroughly discussed by Blumen,
dent random walkers, i.e., the statistical description of theKlafter, and Zumoferj2,18]. In this paper, we will study its
timet; \ elapsed until the firgtout of N independent random multiparticle (N>1) version, which is relevant for all those
walkers (initially starting at the same siteare trapped by cases where the diffusing particles are plagadcreateglin
guenched traps randomly arrangeddsdimensional Euclid-  bunches. This may be especially important if the first or first
ean lattices, was studidgdnd rigorously solved for the one- few particles that are absorbed lead to a trigger effect. Here,
we generalize to disordered fractal substrates the results for
the order statistics of the multiparticle trapping problem ob-
*Email address: santos@unex.es tained for Euclidean media in Ref13]. We will discover
TEmail address: acedo@unex.es that for the two-dimensional incipient percolation aggregate,
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and in sharp contrast with the Euclidean media results, thdimensional incipient percolation aggregate. A general dis-
zeroth-order Rosenstock approximation is quite incapable ofussion and conclusions are given in Sec. V.

describing the survival probabilities, and therefore the order

statistics of the multiparticle trapping problem we are deal- !l. DEFINITIONS AND FUNDAMENTAL RELATIONS

ing with. This is because the ratio between the cumulapts The results and definitions of this section have already
of the distribution ofSy(t) and(Sy(t))™ is relatively large  peen discussed in detail in the context of the trapping prob-
(and almost constanfor N>1. We traced the origin of this |em in Euclidean medifil3]. However, we will briefly sum-
behavior to the fact that the fluctuations in the numBgft)  marize those results that are basic and necessary in order to
of distinct sites explored by a large numbgrof random  follow the arguments in the rest of the paper.

walkers are negligible relative to the fluctuations in the num-  Let us first defineV'; \(t) as the probability thgtrandom

ber of sites that form the stochastic substrate. As a practicatalkers of the initial set oN have been absorbed by tine
consequence, higher-order Rosenstock approximations aby a given configuration of traps arranged on a given real-
required for these media in order to give an account of thézation of the disordered substrate. The quantity of statistical
order statistics trapping problem with an accuracy similar tonterest is the averag®; n(t)=(¥; (t)) performed over
those reached by means of the zeroth-order Rosenstock a@ll the possible outcomes of the “trapping experiment” car-
proximation for Euclidean lattices. The idea of evaluating thefied out in a quenched configuration of traps in a given lat-
survival probability for the multiparticle trapping problem tice realization followed by an average over all trap configu-
for Euclidean media by means of the Rosenstock approximdations and lattice realizations. We will also denote'bit)

tion was first suggested by Larralds al. in Ref. [19], al- the probablllty. thaF a s_mgle random wglker has not been
though, to the best of our knowledge, it has not been implef"bsorbed by time in this quenched configuration of traps
mented (except for the so-called “one-sided trapping placed upon a specific lattice realization. This is commonly

problem” [12]) perhaps for the lack of precise expressionsknown as the survival probability. It is then clear that

for the momentg S{j(t)) of Sy(t). However, for the perco- . .
lation aggregate, we will discover in Sec. Il that one can get \I’j,N(t):( , )(1—‘1’)“1"\'_J
a very good estimate gfS{/(t)) from the value of the first J
moment({Sy(t)). This is fortunate because the asymptotic N\ & . ] Ne i
expansion of Sy(t)) for largeN is known for this medium :( j )m§=:o (=1 (m)q’ :
[20].
The multiparticle Rosenstock trapping problem we are Ny
considering here can be seen as a stochastic generalization of =(- 1)1( j )VJ‘I’O,N : 1)

the problem of the order statistics for the sequence of trap- . _ _

ping times(or exit timeg of a set ofN independent random Wwhere VIW (1) =2 _o(—1)"(h) Yon-m(t) is just the
walkers, all starting from the same site at the same timepackward difference formula for thgth derivative of
when the traps form a “spherical” absorbing boundary with Won(t), d'Won(t)/dN. Averaging over different configura-
a fixed radius. This problem was first studied by Lindenberdions, and taking into account thatbgy(t)=®dy(t)
et al.[21] and Weist al.[22] for Euclidean latticeg¢mainly — ={(Won(t)) and®; (t)=(W¥; (1)), we get

for the one-dimensional caseé\fter these pioneering works, N

improved results and extensions to deterministic and random i N(t)=(—1)j( ) )Vj(pN(t)_ )
fractal substrates have been reporf@d,24]. A closely re- ' J

lated multiparticle Brownian problem has been recently con- | ot us callS; the state in which particles have been
sidered by Beichou et al. [25]: they studied the joint resi- ap<orbed andNJ—j particles of the initial set oN are still
dence times oN independent Brownian particles in a disk of diffusing, and leth; (t) dt be the probability that thgth
a given radius. In particular, they studied the time spent byapsorbed particle of the initial set dfdisappears during the
all N particles simultaneously in the disk within a given time time interval ¢,t+dt]. The change of the probability &,
interval, and the time which at lealst—j out of N particles  during the time interval t(t+dt] is given by ®; (t+dt)
spend together in the disk within a time interval. —®, \(t). But this probability changes during this time in-
The plan of the paper is as follows. In Sec. Il, the expresteryal by two causes: first, because the stiite; can be-
sions that describe the order statistics of the trapping procesgme the staté if a particle of the set oN—j+1 particles
are deduced. In Sec. Ill, we study the momef8J(t)) of  still diffusing is trapped during the time intervat,{+dt]
the territory explored byN independent random walkers on [which happens with probabilits; (t)dt], and second, be-
two-dimensional incipient percolation aggregates by Meangauses; can become the sta&H' if a particle of the set of
of numerical simulation. The results of Sec. Il are applied inN—j particles still diffusing is trapped during this time in-

Sec. IV to obtain the survival probabilitp(t) by means of  terval [which happens with probabilit; , 1 y(t)dt]. There-

Rosenstock’s gpproximation. T.hen we t_:alculate the momentgyre ®; y(t+dt)—D; \ (1) =[h; n() —hj1n()1dE, ie.,
(ty) of the time elapsed until the firgtrandom walkers
are trapped for every=1,2,... andn=1,2,... andcom- heo () =hi y— Eq)_ (t) 3)
pare these predictions with simulation results for the two- J+1N IN-gg 7N
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with ho,NZO- Then, themth moment of the time in which TABLE |. Parameters appearing in the asymptotic expression of

the jth particle is trapped is given by (Sn(t)) and the ratios, and {3 for the two-dimensional incipient
percolation aggregate.
(W= e trat @ & & A & 2 % o 6 G

. . . . 165 245 10 105 08 11 06 014 0.015
Using Eqs.(2)—(4), we find theexactrecursion relation

<t]m+1,N>=<t]n,]N>+ (— 1)1‘( N) Vj<tTN>1 (5) sion exponent._The exppngdﬁ, correspond_ing to the chemi-
J cal (or topological metric is called chemical random walk
dimension. Another important exponent appearing in the
where theory of random walks in disordered media is the spectral or
. fracton dimensiordg=2d; /d,,=2d, /d, [4].
<tr1"N>:mf t™ 1 (1)dt. (6) Rosenstock’s procedurg’] for evaluating the survival
' 0 probability of a set of random walkers requires the knowl-
. .. . edge of the first moments of the territory exploi®g(t) by
The set of Eqs(5) and(6) is remarkable because it implies hese random walkers. This is an interestiagd difficuld
that the order statistics of the trapping problem can be desgpjem in itself which has already been thoroughly studied
scribed from the knowledge dftTy) only. The difference j, the case of N>1 independent random walkers
derivativeV! in Egs.(2) and(5) can be approximated by the [11,19,20,24,27—2galthough only the first momerSy(t))

(and usedlin Sec. IV. of the territory explored byN>1 random walkers, all start-
ing from the same site, in a disordered medium was analyzed
IIl. MOMENTS OF THE TERRITORY EXPLORED BY in Refs.[20,24] and it was found thaft20]
N>1 RANDOM WALKERS ON A TWO-DIMENSIONAL
INCIPIENT PERCOLATION AGGREGATE (SN(t))~ Sytds?, (8)

The diffusion in percolation clusters as a model of trans- .
port in disordered media was first suggested by de Genné’g'th
[26]. Percolation clusters are disordered fractals: they share de I
the self-similarity property with deterministic fractals built Sy=V,(2D )% niN
up through deterministic rules but only in a statistical sense. ~~ ° ¢ C

In order to characterize these fractals, several static and dy-

namic exponents have been defined. Perhaps, the most di—1 2 L ")

widely known is the fractal dimensiaa , which, in the case X|1-d, o nZl (InN) ”mE_O Sm (ININN)™ .
of disordered systems, is more conveniently defined using woo -

the scaling of mass with linear siz®~ L%. However, ran- (9)

dom walkers in disordered structures are forced to follow the

paths formed by the bonds between sites and, consequentiphe parameters ands[? are characteristic of the lattice and

it is more natural to define a chemioar topological dis-  some of their values for several Euclidean and fractal media
tance between two sites as the length of the shortest patire known[20,28,29. In particular, for the two-dimensional
along lattice bonds{. If we consider the number of sites incipient percolation aggregate, Monte Carlo simulations in
inside a hypersphere of radids V(¢), usually known as this substratéwith particles jumping from a site to one of its
chemical volumealso coincides with the mass if we assumenearest neighbors placed at one unit distance in each unit
that every site has a unit masit is expected tha{V(())  time) have shown[20,29 that d,=1.65, v=d/(d},~ 1)
NVO{{ ¢ Whgre Fhe brackets rgfers to an average over al\'/vith d&:2.45, do= 2d€/d@:1.35,v021.1, ¢=1.05, D,
possible realization of the lattices amij is the chemical T Y _ _

dimension. Similarly, the generalized Einstein’s law of diffu- =l2,s7=~v In:ﬁ\c =—0.62 (y=0.577216 Is the Euler
sion for anomalous systems can be written in terms of th€onstant, ands{"=..~0.8 (see Table). Hence we have a
ordinary Euclidean distanaeor the chemical oné, and we ~ reasonable estimate of the asymptotic series{&(t)) in

have Eq. (9) up to first order i=1), which is sufficient to ac-
count for simulation results, as Fig. 1 shows.
(r?y~2Dt%Mw, In our simulations, we also evaluated the second cumulant
(variance, k,(Sy)=(S3)—(Sy)? and the third cumulant,
<62>~2D€t2’d$, (7) K3(SN)=<S§)—3(S§><SN>+2<SN)3, of the territory ex-

ploredSy(t) as they are necessary for implementing the ex-
for t>1, whereD andD, are the diffusion coefficient and tended Rosenstock approximati¢gee Sec. Y. We found
the chemical diffusion coefficient, respectively. The expo-that the ratiok,,= x,(Sy)/{Sn(t))™, although not very sen-
nentd,, is the random walk dimension, also known as diffu- sitive to the value ofN (one can see in Figs. 2 and 3 that
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FIG. 3. Th Fig. 2 but fkg= t))3.
FIG. 1. (Sy(t))/t%? versus IMN in the two-dimensional incipi- G. 3. The same as Fig. 2 but flag = r3(Sy)/(Su(D))

ent percolation aggregate. The lines represent the result of t
zeroth-order approximatioidashed ling and the first-order ap-
proximation (solid line). The symbols are simulation results ob-
tained with 40000 experiments fdr=1000 (circles and with
10000 experiments far=2000 (squares

hﬁJations in the numbegy(t) of distinct sites explored by a
large numberN of random walkers are dominated by the
fluctuations (over the set of stochastic lattice realizations
used in the simulationsn the number of sites inside a hy-

persphere of chemical radids= mtl’dfv. We summarize
these parameters are well representeét5y0.13+0.02 and  this claim in a conjecture as follows:
k;=0.015+0.02 over a wide range dfl valueg, seems to

tend to a constant value for larde (about 0.14 fork, and _ _ km(SN(D)  Kkp(V)
0.016 forks). This is a surprising behavior that departs con- d@ﬁkm:’\ll'_)mﬁ (S\(D)™ - (V(£))™
siderably from that of Euclidean media. For example, for the

d-dimensional Euclidean lattices it was found thaigoes as  \yhereV/(¢) is the chemical voluménumber of sitesof a

1/In® N for largeN. Also, the value ok, for largeNis much  pynersphere of chemical radidsand «,(V) is themth cu-
smaller than for the percolation aggregéfer example, for — myjant of the distribution of/. Rigorously, the distancé

= 10 ~ i - -
N=2%° k,=1/1%,1/3%, and 1/58 in the one-, two-, and appearing in Eq(10) is given by y2D;t%. which is the

three-dimensional Euclidean lattices, respectivéll3]), . I . -
which has important consequences for the accuracy orfad'uS of the diffusion frqnt in '_[he thermodyna_mlc "m'.“(
— ). However, the quotient, is not very sensitive td if

Rosenstock’s approximations of different orders, as we will Hicientlv | lue of is tak In Fia. 4 lot
show in Sec. IV. The disordered nature of the substrate mu%_ stu |C|enfy ?gge %/a ue | ISI a en;c ntvvlg.d' » WE pio Ia'
be the reason for these remarkable differences in the beha{)!Sto9ram for theé chemical volume of a two-dimensional in-

ior of k,,. What is happening is that, for lard¢, the fluc-

€, (10
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FIG. 4. Histogram for the chemical volume inside a circle of
FIG. 2. Simulation values of,= x,(Sy)/{Sy(t))? versus IlN chemical radiu¥ =100 in the two-dimensional incipient percola-
for the two-dimensional incipient percolation aggregate obtainedion aggregate. A set of 2000 randomly generated clusters in a
averaging over 40 000squares and 20 000(circleg experiments 400X 400 square box were used in the computation. The distribu-
for t=1000. tion is clearly asymmetric around the maximum.
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cipient percolation aggregate with=100, evaluated using \writing v =AS\t%/2, the nth-order Rosenstock’s estimate
2000 realizations of the lattice. Thereby we find tHat (th )y for (1T} becomes

=0.14 andf;=0.015 are in very good agreement with the

values ofk, andks, respectively, for larg®l (see Figs. 2 and m _Z_m T - 2midg

3). Consequently, we conclude that the fluctuation§,iit) {t)n= d (ASy) 7a(M), 9

are dominated by the disorder of the substrate and the influ-

ence of the value of is completely overshadowed. Similar Where

arguments were presented by Rammal and Toulouse in their " n+1 (—1)l

pioneering work on percolation clustdi30]. Tn(m)zf p2mids—1 ex;{ > - kjv![dv.  (16)
0 =1

IV. ORDER STATISTICS OF THE TRAPPING PROCESS Therefore, we find that the differenth-order Rosentock ap-

Assume that one has a quenched configuration of trapgroximations(ty’y), differ from each other only by a numeri-
randomly placed on a given realization of the disordered latcal factor7,(m) (an integral that depends only on the sub-
tice with probabilityc. If N random walkers start from an strate through its spectral dimensiah and the set of
origin site free from traps at=0, it is clear that the prob- parameters;, j=1,2,...,which come from the distribu-
ability that all random walkers survive by timds given by  tion of the chemical volume of this substrdtf. Eq. (10)].
(1—c)>M, The average of this quantity over all possible The integral in Eq.(16) is trivial for n=0 and yields
random walks, trap configurations, and substrate realizationgs(m)=I"(2m/d;). Using the values of Table |, we gel
is known as the survival probabilitgby(t)=((1—c)SN®),  =2d,/d!{=1.375 and the estimatesy(1)=0.89, 7,(2)
Using a well-known theorem in statistics, we can define the=1.95, andry(3)=10.9 for the two-dimensional incipient
nth-order Rosenstock approximatiab{(t) for estimating percolation aggregate. The integral in E46) only con-

D \(t) as verges for even values of so the next meaningful approxi-
Nt (=0 mation corresponds to= 2. Taking the valuek,=0.13 and

(N)(4y — — . k;=0.015(which describek, andk; well over the range of
N ex;{ 2 ! KJ(SN)} (D values ofN used in our simulations: see Figs. 2 andadd

evaluating the integral in Eq16) numerically, we found the

where\=—In(1—c) and «;(Sy) is the jth-cumulant of the second-order prefactors,(m): 7,(1)~1.24, 7,(2)~6.04,
distribution of the territory explored. In the limit—o, we  andr,(3)~95.6, which are systematically much larger than
recover the exact result faby(t). In the case of the single- the zeroth-order oneg(m), especially when the orden of
particle (N=1) trapping problem, Eq11) is known as the the moment is large. This means that Rosenstock’s approxi-
extended Rosenstock approximation or truncated cumulamhations of order higher than zero must be necessary to pro-
expansiori3-5,18,31,3 Its generalization to thi-particle  vide reasonable predictions faby(t) and (tTy) in disor-
case was used in a one-dimensional trapping problem idered media, especially when the momentis large. It
Ref.[12]. should be noted that the expression for the first trapping time

In the preceding section, we showed that Monte Carldn Eq. (15) includes two approximations of different nature:
simulations strongly suggest tha,(Sy)=k,(Sy(t))" for  (a) due to the fact that we are using a finite numbeof
large N, where k, are constants.[Note that «,(Sy)  terms in the cumulant expansiwhich only affects the fac-
=(S\(1)), so thatk,=1.] Therefore, inserting this result tor r,(m)] and (b) due to the finite number of terms consid-

into Eq. (11), the nth-order Rosenstock approximation be- greq for estimatings, by means of the asymptotic seri.

comes Consequently, it is convenient to classify these approxima-
n+1 ( )i tions by indexing them with a pair of integers,(): the first
CD(N”)(t)zexr{ E —k;(Sy)’ } (12 index gives the order of the Rosenstock approximation that is
= used, and the second gives the number of terms considered in

the evaluation of{Sy(t)). In this way, the approximation

or equivalently, by using Eq(8), (n,0) corresponds to the replacement in Eldp) ong by the

n+1 H H m
(_ )] leading term of the series of Eq9), so that (ty)n
o exp[ 2 ——k;Stis? (13 =t ol 1+O(1/INN)] with
m(1-d¢)

We can now evaluate an approximation for the moments of (A o= 2mmy(m) InN 17
the first trapping time(t]),), by means of Eq(6) assuming IO G [AV(2D ) 9e212mds | ¢
that the contribution ofb(t) to <t1N> is negligible for those
times for which ®y(t) and ®{’(t) differ substantially. _ Tn(m) 19
Therefore, the substitution of E¢L3) into Eq. (6) yields A2M/ds( | N)m(dfvfl)'

n+1

2( A k;S\t1952|d
j!

=1

and where we have absorbed all the dependence on the lat-
tice characteristic parameter¥{, D,, dg, ...) into the
(14)  coefficientT,(m). In the same way, if we take the two first

(D= (= [ e 1exp[
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10 L A B VIF(N)  dif(N) di F1F(N)
I e — = — +0 . AN]. (21
(AN)l  dN/ dNit?
In our casef(N) is (t7y) andAN=1 so that
: d/(tT) d " Y(tT)
] m = . d
VI{tT\ N + VR (22
As
dl (-1
—(InN) #=(-1)} ——(InN)~#71
SN = (=Dl (InN)
ol . 1 R 1 R 1 R 1 N 1 N

InN

FIG. 5. (tyn)A29) Y- versus IN for the two-dimensional ~ one finds, from Eq(18) [or Eq. (19)], that
incipient percolation aggregate. The lines representntteorder dj(tm )
Rosenstock approximation that uses ltheorder approximation for Vj<tm )= 1v_N [1+O(N_1)]. (24)
Sy(t) with, from top to bottom,n=0 and|=0 (dotted ling, n IN dN!
=0 andl =1 (dashed-dotted linen=2 andl =0 (dashed ling and
n=2 andl=1 (solid line). In this and the following figures, we Taking into account thatJNO/NJZZL/j! for j<N, we obtain
have useck,=0.13 andk;=0.015. The symbols represent simula- {rom Eqs.(5), (18) [or (19)], and(23) the recursion relation
tion results forc=0.008 (average over 2000 lattice realizations;
circles andc=0.001 (20 000 lattice realizations; squares

1
(o ="+ j_m(dfv_ 1)Tp(m)

terms in the asymptotic series of E(R), we find (t\),

=<t1m,N>n1[1+ O(1/InN)?], where the approximatiom(1) is X\ T 2Mds(|n N)—m(dfv—l)—l 1+0 %) }
n
ey o Tolm (25
1IN/Nn1™ [
NZ™ds(In N) (™D which can be easily solved:
41 SO+ N2 () =(tTn) +m(dy,— 1) Tp(m)n ~ 2™
X|1-dy— (19
d InN :
w p(i)+y 1
@ 01| Y OlmN) | @0
or, for InN>1, (INN)™Cw
T.(m) where
m .
<tr1n,N>n1= A T i—1 1
N2 N) () W)=+ 2, 27)
. sP+sPinN
X 1+mdy =) — (200 s the psi(digamma function[33], ¥(1)=— vy, andy is the
Euler constant. Equatiof26) yields
In Fig. 5, we compare simulation results for the trapping " Ta(m)
time of the first particle with the theoretical predictions given (tnIno= X235 N)m(dfr 1 (28)
by Egs.(18) and (19) when the parameters of Table | are
used. We see that the second-order Rosenstock approxim@y using Eq.(18), and
tion leads to much better results than the standard zeroth- ’
order approximation. m Ta(m) P
The moments(t!y), j=2,3, ..., corresponding to the (G = g md—1) 1+m(d,—1)
. L A C(In N) ™ Cw
trapping of thejth particle absorbed by the traps can be
easily estimated by means of E&). However, we can also W(j)+y+ sgl)+ stV inN
obtain an explicit expression thfN> if we approximate the X nN ) (29

difference operatoV! in Eq. (5) by the derivatived!/dNI.
The error in this approximation can be estimated from thevhen Eq.(20) is used. In Fig. 6, we compare the predictions
equation for (t,y) obtained from Eqs(28) and (29) with simulation
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FIG. 6. The same as Fig. 5 but foftg)A ™) ’ FIG. 8. Simulation values of; y/(t; n) versus IlN for j=1

. . ) (circles, j=2 (squares andj =3 (triangles and two trap concen-
results. Th‘? results ar'e similar to that found in Flg. S fortrations:c=0.001(hollow symbols; 20 000 lattice realizationsnd
(tin). In Fig. 7 the differencest;. ) —(tj,) estimated ¢_ 008 (filed symbols; 2000 lattice realizationdor the two-
from Eq. (25 are also plotted in a scaled form fp=1,2.  gimensional incipient percolation aggregate. The second-order
The theoretical prediction is that, for largé these points Rosenstock approximation predicts a ratio close to 2 for large val-
should tend to lie along a straight lifehich is trug with a  yes ofN.

slope @fv—l)Tz(l)/j, i.e., a slope 0.76 foj=1 and 1.0 for

j=2. The last prediction is not good fgr=2 (the fitted The variance of; \ is easily obtained from Eq15):
value is 0.90, but this should not be surprising because in
Eq. (25) we have ignored correction terms of order Mn » [Ta(2)~Ta(D)] 4
which are very large even for huge valuesf The only o-ij_)\4/dS(|nN)2(d$vfl) 1+2(dy—1)
way to remedy this deficiency would be by increasing the
number of asymptotic terms retained in the evaluation of P(j)+y+ sgl)+s(11)|nN 1
(S(t)), which in turn requires knowing{" for n=2 [cf. NN 5 (30
Eq. (9)]. Unfortunately, these values sﬁ,’]) are very difficult !
to estimate by means of numerical simulati¢@86] and are and, consequently,
unknown forn=2.
2
10 T T T T T T T T T U]YN = Tn(2) (31)

= —1.
(ti)? (D)2

This is an interesting result because it means that the ratio
between the variance of the first trapping time and the mean
of that time is, for large, independent oN. The numerical
value of the ratiooj \/(tyn) IS [dI(4/d)/T?(2/dg)]—1
=1.53 for the zeroth-order Rosenstock approximation, and
2.0 for the second-order approximation. In Fig. 8, we plot
this ratio forj=1,2,3 versus I, and the second-order the-
oretical limit oj \/(tyn)=2 seems to be consistent with the
simulation data.

Some considerations about the range of validity of the
approximations developed in this paper are called for at this
9 4 6 3 10 point. The approximation fo(Sy(t)) in Egs.(8) and (9) is
only valid in the so-called regime Il or intermediate time
regime[20,29. As the integral in Eq(6) was evaluated as-

FIG. 7. Simulation results 01[(<tj+1‘N>_<tj‘N>))\z/ds]71/dg s_uming that the expressior_1 fQSN(t)>va?s valid for all
whenj =1 (hollow symbol3 andj=2 (filled symbols for the two-  imes, we conclude that the integralmf™ “®y(t) over the
dimensional incipient percolation aggregate. Squécesles rep- ~ Short-time intervalOt, ] (t.~In N being the crossover time
resent simulation results faz=0.001[c=0.008 averaged over between regime | and regime has to be negligible relative
20000[2000] lattice realizations. The lines are linear fits with to (t7), or equivalently (IN)™<(tfy), for our approach
slopes 0.74bottom and 0.90(top). and our results being reasonable. Taking into account the

2/d1-1/d
[(<ty>-<t, T

0 1 1 1 1 1 L 1 1 1

InN
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estimate for(tyy) given in Eq.(18), this condition can be expression for the survival probabiligpy(t) [cf. Eq. (12)]
written ash <(In N)~%. The concentrations of traps we have using Rosenstock’s approximation. But fraby,(t) one gets
used in our simulationg;=0.001 andc=0.008, verify this the probability®;\(t) thatj random walkers of the initial set
condition for all the values ol considered. Apart from this of N have been absorbed by tinigcf. Eq. (2)], so that,
upper bound orc, we must also point out that, as also for finally, we get the moments of the trapping tin(eﬁm from
Euclidean lattices, our results break down if most of the trapthe first moment S, (t)) of the territory explored!

ping takes place within the long-time Donsker-Varadhan re- Comparison with simulation data shows that, in contrast
gime [34]. Further reference to this limitation of the theory with the Euclidean case, Rosenstock’s approximations of the

presented in this paper will be made below. order higher than zero are necessary to account for the order
statistics results in the two-dimensional percolation aggre-
V. SUMMARY AND CONCLUSIONS gate. This is a consequence of the large v@ineomparison

) ) . with the Euclidean casef k,,,, due to the large fluctuations
We ha_lve dealt with the following order statistics problem:; the territory explored by the random walkers, induced, as
when N independent random walkers all starting from the,ye showed, by the spatial disorder of the substrate. However,
same site diffuse on a disordered lattice populated with &ome features of the order statistics of trapping hold in the
concentratiorc of static trapping sites, what is the distribu- yisordered case: for example, we found that the ratio
tion of the elapsed times,y until the firstj random walkers . /¢, ) depends only on the lattice characteristic param-
are trapped? We were able to generalize the theory develop%@érsds‘and k., m=12, ..., for largeN. This was con-

for the special case of Euclidean lattidds] to the case of = fymed by simulations in two-dimensional percolation aggre-
disordered substrates, and asymptotic expressions for ”Efates.
moments(t{’y) with j<N were obtained. To this end, we ~ There are some interesting problems that we still cannot
used the so-called Rosenstock approximation, which is suitanswer with the theory developed in this paper. For example,
able for not very large times and small concentrations oy jmportant quantity is the time, y elapsed until all the
traps,c. In this approximation, the survival probability of the particles of the initial set oN are trapped. The evaluation of
full set of N random walkersPy(t), is expressed in terms of the moments of this quantity would require specific tech-
the cumulants«(Sy) of the distribution of the territory cov- niques forj~N as our results are limited to the opposite
eredSy(t). . . . limit j<N. Moreover, the trapping of the last particles surely
Monte Carlo simulation results fok(Sy) in the two-  takes place in the Donsker-Varadhan time regi6% where
dimensional incipient percolation aggregate showed that forpsenstock’s approximation for the survival probability can-
largeN the ratioky, = km(Sy)/(Sn(1))™, withm=2,3, hardly  not be used. The recent development of a Monte Carlo
depends orN and is very large in comparison with the cor- method to evaluate confidently the survival probability in the
responding Euclidean ratio. We attribute this behavior to th@onsker-Varadhan time regime for Euclidean lattices by
fluctuations inSy(t) being dominated by the fluctuations in Barkemaet al. [35], following a previous work of Gallos
the volume of the medium inside a hypersphere of chemicadt al. [36], could serve as starting point for tackling this
radius € ~ 2D ,tY%, This claim is supported by the result problem. However, one should be aware that this task is not
Km=~Im for N>1 found by simulations o8y(t) andV(¢) in  a straightforward generalization to disordered media of that
two-dimensional incipient percolation aggregates, whgre carried out for Euclidean lattices because one has to take into
= km(V)/(V(£))™ characterizes the fluctuations in the vol- consideration that, as ShapB7] pointed out, the Donsker-
ume V(£). Therefore, the resuk,~I,, for N>1 implies Varandhan long-time behavior is dominated by the subset of
that the fluctuations i$y(t) are mainly accounted for by the lattice realizations that are more ramifigeith ds=1). Con-
fluctuations inV(¢), and that the fluctuations iBy(t) in-  sequently, an efficient Monte Carlo technique to explore the
duced by the randomness of the diffusion process are irrefelevant rare lattice realizations in percolation clusters has to
evant. One expects this also to be true for other disorderelle devised before.
media. Hence, if(S,(t)) is known, the cumulants of the
distribution of Sy(t) can be calculatedfor any ;uf_ficie_ntly ACKNOWLEDGMENT
large value ofN) from the cumulants of the distribution of
the chemical volume. Finally, taking into account that This work was supported by the Ministerio de Ciencia y
(S\(t)) is reasonably well knowf20], we arrive at a closed Tecnologa (Spain through Grant No. BFM2001-0718.
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